Category Archives: Cardiology and Vascular diseases

ECG/EKG Reading Made Easy with Animation

The videos on this page are available for licensing here!

Lead 2 is most popular among the 12 leads. This is because the net movement of the heart’s impulses is toward lead II, making it the best general view. Unless otherwise specified, we will be looking at lead 2.

Our analysis will include the following: heart rate, heart rhythm, P wave, PR interval, QRS complex, ST segment.

For heart rate: Identify the QRS complex – usually the biggest on an ECG; count the number of small squares between two consecutive QRS complexes and calculate the heart rate with this formula. If this number is variable, count the number of QRS complexes on a 6 second strip and multiply by 10. A normal heart rate is between 60 and 100 beats per minute. A rate of less than 60 bpm is bradycardia; heart rate of more than 100 bpm is tachycardia.

For rhythm: measure the intervals between the R waves. If these intervals vary by less than 1.5 small squares, the rhythm is regular; if the variation is greater than 1.5 small squares, the rhythm is irregular.

P wave represents depolarization of the atria initiated by the SA node. Presence of a normal P wave therefore indicates sinus rhythm. P waves are most prominent in leads II, III, aVF and V1.

Absence of P waves indicates non-sinus rhythms. Absence of P waves and presence of irregular narrow QRS complexes are the hallmark of atrial fibrillation. The baseline may be undulating or totally flat.

A sawtooth pattern instead of regular P waves signifies atrial flutter. These are called flutter waves. The number of flutter waves preceding a QRS complex corresponds to number of atrial contractions to one ventricular contraction.

P wave is the summation of 2 smaller waves resulting from depolarization of the right atrium followed by that of the left atrium. Normal P waves are rounded, smooth and upright in most leads. In V1, P wave is biphasic, with an initial positive deflection corresponding to activation of the right atrium, and a subsequent negative deflection, resulting from activation of the left atrium.

Unusual morphology of P waves is indicative of atrial enlargement. In right atrial enlargement, depolarization of the right atrium lasts longer than normal and its waveform extends to the end of that of the left atrium. This results in a P wave that is taller than normal, more than 2.5 small squares. Its duration remains unchanged, less than 120ms. In V1, this is seen as a taller initial positive deflection of the P wave, more than 1.5 small squares. Right atrial enlargement is usually due to pulmonary hypertension.

In left atrial enlargement, depolarization of the left atrium lasts longer than normal. This results in a wider P wave, of more than 3 small squares. The waveform may also be notched. In V1 the negative portion of P wave is deeper and wider. Left atrial enlargement is commonly due to mitral stenosis.

P-wave inversion in the inferior leads indicates a non-sinus rhythm. When this happens measure the PR interval. If the PR interval is less than 3 small squares, the rhythm is started in the AV junction – AV nodal junctional rhythm. If the PR interval is more than 3 small squares, the origin of the rhythm is within the atria – ectopic atrial rhythm.


The PR interval is measured from the start of the P wave to the start of the QRS complex and reflects the conduction through the AV node.

A longer than normal PR interval signifies an abnormal delay in the AV node, or an AV block. A consistent long PR interval of more than 5 small squares constitutes first-degree heart block. It might be a sign of hyperkalemia or digoxin toxicity. A progressive prolongation of PR interval followed by a P wave WITHOUT a QRS complex is the hallmark of second-degree AV block type I.

A shorter than normal PR interval, of less than 3 small squares, signifies that the ventricles depolarize too early. There are 2 scenarios for this to happen:

  • Pre-excitation syndrome: presence of an accessory pathway bypassing the AV node.
  • AV nodal (junctional) rhythm: Non-sinus rhythm initiated from around the AV node area instead of the SA node. In this case, P waves are either absent or inverted in the inferior leads.

The QRS complex represents depolarization of the ventricles. A normal QRS complex is narrow, between 70 and 100 ms. A wider QRS complex, resulting from an abnormally slow ventricular depolarization, may be caused by:

–          A ventricular rhythm: rhythms originated from ectopic sites in the ventricles. OR

–          An impaired conduction within the ventricles in conditions such as bundle branch block, hyperkalemia or sodium-channel blockade.

A QRS complex wider than three small squares despite sinus rhythm is the hallmark of bundle branch block. When bundle branch block is suspected, check leads V1 and V6 for characteristic patterns of the QRS complex.
The ST segment extends from the end of the S wave to the start of the T wave. A normal ST segment is mostly flat and level with the baseline. Elevation of more than two small squares in the chest leads or one small square in the limb leads, indicates the possibility of myocardial infarction.

Pericarditis causes a characteristic “saddleback” ST segment elevation and PR segment depression in all leads except aVR and V1, where the reverse – ST depression and PR elevation – are seen.

Email this to someoneShare on FacebookTweet about this on TwitterShare on Google+Share on LinkedIn

Cardiac Axis Explained, with Animation.

This video is available for licensing on Alila Medical Media website. Click HERE!

Cardiac axis is the net direction of electrical activity during depolarization. In a healthy heart, the net movement is downward and slightly left. This axis is altered, or deviated, in certain conditions. For example, in left ventricular hypertrophy the axis is skewed further left; while right ventricular hypertrophy results in a deviation to the right.

Cardiac axis can be determined by examining the 6 limb leads, which look at the heart from different angles in a vertical plane. The QRS axis is the most important, and also the easiest to be determined, as it represents ventricular depolarization. The QRS axis is considered normal when it is between -30 and +90 degrees. Left axis deviation is between -30 and -90 degrees. Right axis deviation goes between +90 and +180 degrees. The rest is known as northwest axis or extreme axis deviation.

Remember that depolarization TOWARD a lead produces a POSITIVE deflection; depolarization AWAY from a lead gives a NEGATIVE deflection. Impulses moving at a 90 degree angle relative to a lead produce an isoelectric, or equiphasic result with positive and negative deflections of similar amplitude.

There are several methods to estimate the QRS axis; we here discuss 2 of them.

The quadrant method.

This method looks at the QRS complex in lead 1 and lead aVF. If the QRS complex is mostly positive in both leads, the axis is somewhere in between the 2 leads, which is in the normal range. If it’s negative in lead I and positive in aVF, the axis is running away from lead I but toward aVF and is thus in the lower right quadrant. The diagnosis is right axis deviation. A positive value in lead I and negative in lead aVF, place the axis in the upper left quadrant, which interprets as possible left axis deviation. A more accurate method will be needed to further determine if it is borderline normal or left deviation. Negative values of the QRS complex in both leads are indicative of extreme axis deviation.

The isoelectric lead method

This method consists of finding the isoelectric or equiphasic lead – the one with equal, or closest to equal, negative and positive deflections. In other words, the one with zero, or nearest to zero, net amplitude.  The axis line is perpendicular to the direction of the isoelectric lead. Now, look at the lead that runs nearest to this line. If the QRS complex is positive in that lead, the axis points to roughly the same direction as the lead. If it is negative, the axis points to the opposite direction.

There is also a method for exact calculation of the heart axis but it is rarely used in clinical practice.

Email this to someoneShare on FacebookTweet about this on TwitterShare on Google+Share on LinkedIn

ECG de 12 Derivaciones Explicado, con Animación.

¡Haz clic aquí para poder acceder a nuestro video y otras imágenes/videos similares en nuestra página web!

Las actividades eléctricas del corazón pueden ser recogidas en la piel por medio de electrodos. Un electrocardiógrafo registra estas actividades y las muestra gráficamente. Los gráficos muestran el potencial eléctrico, o voltaje, GLOBAL del corazón conforme cambia a través del tiempo durante un ciclo cardíaco.
Las 12 derivaciones del ECG representan 12 vistas eléctricas del corazón desde 12 ángulos diferentes. El procedimiento convencional de 12 derivaciones implica colocar 10 electrodos en el cuerpo: uno en cada miembro y seis en el tórax.
Hay 6 derivaciones de los miembros y 6 derivaciones precordiales.
Las 6 derivaciones de los miembros miran al corazón en un plano frontal y se obtienen a partir de 3 electrodos colocados en el brazo derecho, brazo izquierdo, y pierna izquierda. El electrodo de la pierna derecha es un electrodo a tierra.
La medida del voltaje requiere de 2 polos: negativo y positivo. El electrocardiógrafo usa el polo negativo como referencia cero. Por lo tanto, la posición del polo positivo es el “punto de vista”, y la línea que conecta los dos polos es la “línea de visión”.
Las derivaciones I, II, y III son BIpolares – miden el potencial eléctrico entre 2 de los 3 electrodos de los miembros: la derivación I representa el voltaje entre el brazo derecho – polo negativo – y el brazo izquierdo – polo positivo, y por lo tanto mira el corazón desde la izquierda. La derivación II detecta el voltaje entre el brazo derecho – negativo – y la pierna izquierda – positivo – formando la vista INFERIOR IZQUIERDA. De forma similar, la derivación III mide el potencial eléctrico entre el brazo izquierdo – negativo – y la pierna izquierda – positivo, observando el corazón desde un ángulo INFERIOR DERECHO.
Las derivaciones aVR, aVL, y aVF, o “derivaciones ampliadas de los miembros”, son UNIpolares. Estas utilizan UN electrodo de un miembro como el polo positivo, y toman el promedio de las aportaciones de los OTROS dos como la referencia cero. De esta forma, aVR mira el lado SUPERIOR DERECHO del corazón; aVL mira el lado SUPERIOR IZQUIERDO del corazón; y aVF mira a la pared INFERIOR del corazón.
Las derivaciones precordiales miran el corazón en un plano HORIZONTAL. Estas son derivaciones unipolares. Los electrodos torácicos correspondientes actúan como los polos positivos. La referencia de valor negativo es la misma para todas las derivaciones precordiales y se calcula como el promedio de las aportaciones de los tres electrodos de los miembros.
La DESpolarización EN DIRECCIÓN a la derivación produce una onda POSITIVA; la DESpolarización EN DIRECCIÓN CONTRARIA a la derivación da una onda NEGATIVA. Lo CONTRARIO es verdadero para la REpolarización. De esta forma, las derivaciones que miran al corazón desde diferentes ángulos pueden tener ondas apuntando en diferentes direcciones.

Email this to someoneShare on FacebookTweet about this on TwitterShare on Google+Share on LinkedIn

Baroreflex Regulation of Blood Pressure, with Animation.

Click HERE to license this video on Alila Medical media website!


Baroreflex, or baroreceptor reflex, is one of the mechanisms the body uses to maintain stable blood pressure levels or homeostasis. Baroreflex is a rapid negative feedback loop in which an elevated blood pressure causes heart rate and blood pressure to decrease. Reversely, a decrease in blood pressure leads to an increased heart rate, returning blood pressure to normal levels.

The reflex starts with specialized neurons called baroreceptors. These are stretch receptors located in the wall of the aortic arch and carotid sinus.  Increased blood pressure stretches the wall of the aorta and carotid arteries causing baroreceptors to fire action potentials at a higher than normal rate. These increased activities are sent via the vagus and glossopharyngeal nerves to the nucleus of the tractus solitarius – the NTS – in the brainstem.  In response to increased baroreceptor impulses, the NTS activates the parasympathetic system – the PSNS – and inhibits the sympathetic system – the SNS. 

As the PSNS and SNS have opposing effects on blood pressures, PSNS activation and SNS inhibition work together in the same direction to maximize blood pressure reduction. Parasympathetic stimulation decreases heart rate by releasing acetylcholine which acts on the pacemaker cells of the SA node. Inhibition of the sympathetic division decreases heart rate, stroke volume and at the same time causes vasodilation of blood vessels. Together, these events rapidly bring DOWN blood pressure levels back to normal.

When a person has a sudden drop in blood pressure, for example when standing up, the decreased blood pressure is sensed by baroreceptors as a decrease in tension.  Baroreceptors fire at a lower than normal rate and the information is again transmitted to the NTS.  The NTS reacts by inhibiting parasympathetic and activating sympathetic activities. The sympathetic system releases norepinephrine which acts on the SA node to increase heart rate; on cardiac myocytes to increase stroke volume and on smooth muscle cells of blood vessels to cause vasoconstriction. Together, these events rapidly bring UP blood pressure levels back to normal.

Baroreceptor reset : Baroreflex is a short-term response to sudden changes of blood pressure resulted from everyday activities and emotional states.  If hypertension or hypotension persists for a long period of time, the baroreceptors will reset to the “new normal” levels. In hypertensive patients for example, baroreflex mechanism is adjusted to a higher “normal” pressure and therefore MAINTAINS hypertension rather than suppresses it.

Email this to someoneShare on FacebookTweet about this on TwitterShare on Google+Share on LinkedIn

Understanding the 12-Lead ECG System, with Animation.

This video can be licensed on Alila Medical Media website. Click HERE!


Electrical activities of the heart can be picked up on the skin via electrodes. An ECG machine records these activities and displays them graphically. The graphs show the heart’s OVERALL electrical potential, or voltage, as it changes over time during a cardiac cycle.
The 12 leads of the ECG represent 12 electrical views of the heart from 12 different angles. The conventional 12-lead procedure involves attaching 10 electrodes to the body: one to each limb and six across the chest.
There are 6 limb leads and 6 chest leads.
The 6 limb leads look at the heart in a vertical plane and are obtained from three electrodes attached to the right arm, left arm, and left leg. The electrode on the right leg is an earth electrode.
The measurement of a voltage requires 2 poles: negative and positive. The ECG machine uses the negative pole as zero reference. Thus, the position of the positive pole is the “point of view”, and the line connecting the 2 poles is the “line of sight”.
Leads I, II, and III are BI-polar – they measure electrical potential between 2 of the 3 limb electrodes: Lead I represents the voltage between the right arm – negative pole – and the left arm – positive pole, and thus looks at the heart from the left. Lead II sees signal movements between the right arm – negative – and the left leg –positive – forming the INFERIOR LEFT view. Similarly, lead III measures electrical potential between the left arm – negative – and the left leg –positive, looking at the heart from an INFERIOR RIGHT angle.
Leads aVR, aVL, and aVF, or “augmented limb leads”, are UNIpolar. They use ONE limb electrode as the positive pole, and take the average of inputs from the OTHER two as the zero reference. Hence, aVR looks at the UPPER RIGHT side of the heart; aVL looks at the UPPER LEFT side of the heart; and aVF looks at the INFERIOR wall of the heart.
The chest leads, or precordial leads, view the heart in a HORIZONTAL plane. These are unipolar leads. The corresponding chest electrodes serve as the positive poles. The reference negative value is the same for all chest leads and is calculated as the average of inputs from the three limb electrodes.
DE-polarization TOWARD a lead produces a POSITIVE deflection; DE-polarization AWAY from a lead gives a NEGATIVE deflection. The REVERSE is true for RE-polarization. Thus, leads that look at the heart from different angles may have waves pointing in different directions.

Email this to someoneShare on FacebookTweet about this on TwitterShare on Google+Share on LinkedIn

Bundle Branch Blocks, Understanding ECG, with Animation.

This video is available for licensing on Alila Medical Media website. Click HERE!


Bundle branch blocks happen when there is an obstruction in one of the bundle branches. The names “left bundle branch block” and “right bundle branch block” indicate the side that is affected.

In a normal heart, the two ventricles are depolarized simultaneously by the two bundles and contract at the same time. In bundle branch blocks, the UN-affected ventricle depolarizes first. The electrical impulses THEN move through the myocardium to the other side. This results in a DELAYED and SLOWED depolarization of the affected ventricle, hence a broader QRS complex – typically longer than 120 milliseconds; and a loss in ventricular synchrony.

Left and right bundle branch blocks are diagnosed and differentiated by looking at ECG recordings obtained from the CHEST leads, which register signal movements in a horizontal plane. Of these, the most useful are leads V1 and V6 as they are best located to detect impulses moving between the left and right ventricles.

Activation of the ventricles starts with the interventricular septum. In normal conduction, depolarization of the septum is initiated from the left bundle going to the right, TOWARD V1 and AWAY from V6. This results in a small positive deflection in V1 and a negative deflection in V6. The signals then move both directions to the two ventricles, but as the left ventricle is usually much larger, the NET movement is to the left, AWAY from V1, TOWARD V6. This corresponds to a negative wave in V1 and a positive wave in V6.

In RIGHT bundle branch block the initial septal activation is unchanged. The left ventricle depolarizes NORMALLY toward V6, away from V1, producing a positive deflection in V6, negative in V1. The impulses then REVERSE the direction spreading to the right ventricle, hence a subsequent negative wave in V6, positive in V1. Lead V1 gives a characteristic M shape with a terminal R wave, while V6 sees a broader S wave.

In LEFT bundle branch block septal depolarization is REVERSED, from right to left, giving a negative wave in V1. The right ventricle activates first, with the signals moving to the right, generating a small upward deflection.  Depolarization then spreads to the larger left ventricle, resulting in a large downward deflection. Lead V6 sees the opposite, producing a wide, characteristic “bunny ears” QRS complex with two R waves. In some cases, right ventricular depolarization may not be visible.

Some people with bundle branch blocks are born with this condition. They usually do not have any symptoms and do not require treatments. Others acquire it as a consequence of another heart disease. These patients need monitoring, and in severe cases, a pacemaker may be required to restore ventricular synchrony. ­­

Email this to someoneShare on FacebookTweet about this on TwitterShare on Google+Share on LinkedIn

Atrial Septal Defects, with Video.

The videos on this page can be downloaded upon purchase of a license on Alila Medical Media website. Click here!


Atrial septal defect, or ASD, is a congenital heart defect in which blood flows abnormally between the two atria of the heart. Normally, the atria are separated by a wall called the interatrial septum. In ASD patients, this septum is defective allowing blood flow between the two chambers.

During fetal development, when the interatrial septum is being formed, a small passageway called the “foramen ovale” is left open to allow the blood to bypass the non-functional fetal lungs while the fetus obtains oxygen from the mother’s placenta. At birth, as the lungs become functional, the changes in pressures between the two sides of the heart force the opening to close. However, in as many as one fourth of all adults, this opening does not close properly resulting in ASDs.

The severity of a defect is measured by a net flow of blood, or a SHUNT. A shunt can be in either direction. Commonly, the condition starts as a “left-to-right-shunt” due to significantly higher blood pressure in the left side of the heart. This is because the left side has to pump blood all over the body while the right side only needs to send it to the lungs. Fortunately, in a majority of people the defect is relatively small; the shunt is negligible and does not cause any symptoms. When the defect is large, a clinically significant left-to-right blood flow may overload the right side of the heart, resulting in its enlargement and eventually right side heart failure.

Without treatment, other complications may also occur. As the right ventricle continuously pumps more blood to the lungs, the entire pulmonary vasculature may be overloaded and pulmonary hypertension may result. Pulmonary hypertension, in turn, would force the right ventricle to generate even higher pressures to overcome the high pressure in the lungs. In some cases, this vicious cycle may cause the blood pressure in the right side of the heart to increase to a GREATER level than that of the left side. If this happens, the shunt will reverse its direction; a “right-to-left shunt” will result; the oxygen-poor blood will flow from the right atrium to the left atrium and will be sent to all tissues of the body. Fortunately, this complication, called the Eisenmenger syndrome, usually develops over many years and occurs only in a small percentage of people with large atrial septal defects.

Small ASDs do not cause any symptoms and may not require treatment. In fact, many small defects close on their own during early childhood. Large atrial septal defects that cause clinically significant symptoms usually require surgical closure. As a general rule, the earlier in life the surgery is performed, the higher the success rate and the lesser complications presented.

Email this to someoneShare on FacebookTweet about this on TwitterShare on Google+Share on LinkedIn

O trajeto do fluxo sanguíneo pelo coração, com animação.

Este vídeo e outras imagens/vídeos relacionados (em alta definição) estão disponíveis para download sob licença aqui!

O sangue pobre em oxigênio do nosso corpo volta para o átrio direito do coração. Sangue da parte superior do corpo volta através da veia cava superior, sangue da parte inferior do corpo volta pela veia cava inferior. Quando o átrio direito se enche de sangue, ele contrai, a válvula tricúspide abre e o sangue é bombeado para o ventrículo direito do seu coração. Quando o ventrículo direito está cheio, a válvula tricúspide fecha para evitar que o sangue volte a entrar no átrio. O ventrículo direito contrai, a válvula pulmonar abre e o sangue é bombeado para a artéria pulmonar e para os pulmões. A válvula pulmonar fecha para o sangue não voltar para o ventrículo.
O sangue rico em oxigênio, proveniente dos pulmões, volta pelas veias pulmonares para o átrio esquerdo do coração. Quando o átrio esquerdo está cheio de sangue, ele contrai, a válvula mitral abre e o sangue é bombeado para o ventrículo esquerdo do seu coração. Isso ocorre ao mesmo tempo que o átrio direito bombeia sangue para o ventrículo direito no outro lado do coração. Quando o ventrículo esquerdo está cheio, a válvula mitral fecha, a válvula aórtica abre, o ventrículo esquerdo contrai e o sangue rico em oxigênio é bombeado para a artéria aorta para que chegue a todas as partes do seu corpo. Isso acontece ao mesmo tempo que o ventrículo direito bombeia sangue para a artéria pulmonar, no outro lado do coração. A válvula aórtica fecha rapidamente para que o sangue não entre de volta no coração. Enquanto isso, os átrios já se encheram de sangue e o ciclo se repete.

Email this to someoneShare on FacebookTweet about this on TwitterShare on Google+Share on LinkedIn

O Sistema de Condução do Coração e Relacionamento com ECG, com Animação.

Este vídeo e outras imagens/vídeos relacionados (em alta definição) estão disponíveis para download sob licença aqui!


O Sistema de condução do coração é composto pelos seguintes componentes:
– Nódulo sinoatrial, ou nódulo SA, localizado no átrio direito perto da entrada da veia cava superior. Este é o marca-passo fisiológico do coração. Este é responsável por todo o batimento cardíaco e determina a frequência cardíaca. Os impulsos elétricos do nódulo SA propagam-se por ambos os átrios e estimulam a sua contração.
– O nódulo atrioventricular, ou nódulo AV, localizado no outro lado do átrio direito, perto da válvula atrioventricular. O nódulo AV serve como um portal elétrico para os ventrículos. Este atrasa a passagem de impulsos elétricos para os ventrículos. Este atraso assegura que os átrios já expulsaram todo o sangue para os ventrículos antes de estes contraírem.
– O nódulo AV recebe sinais do nódulo SA e envia-os para o feixe atrioventricular– feixe de His.
– Este feixe é dividido em dois ramos, o ramo direito e o ramo esquerdo que conduzem os impulsos até o ápice do coração. Os sinais são então enviados para as fibras de Purkinje, virando para cima e propagando-se pelo miocárdio ventricular.
A atividade elétrica do coração pode ser registrada sob a forma de eletrocardiograma, ECG ou EKG. Um ECG é um registo composto de todos os potenciais de ação produzidos pelos nódulos e células do miocárdio. Cada onda ou segmento do ECG corresponde a um certo evento do ciclo elétrico cardíaco.
Quando os átrios estão cheios de sangue, o nódulo SA dispara, sinais elétricos propagam-se através dos átrios e levam-nos a despolarizarem. Isto é representado pela onda P no ECG. A contração atrial, ou sístole atrial começa cerca de 100 milissegundos depois do início da onda P.
O segmento PQ representa o tempo de condução do impulso elétrico desde o nódulo SA até o nódulo AV (NAV).
O complexo QRS marca o disparo do nódulo AV e representa a despolarização ventricular:
– A onda Q corresponde à despolarização do septo interventricular
– A onda R é produzida pela despolarização da massa principal dos ventrículos
– A onda S representa a última fase da despolarização ventricular na base do coração.
– A repolarização atrial também ocorre durante este tempo, mas o sinal é ofuscado pelo grande complexo QRS.
O segmento ST reflete o platô do potencial de ação do miocárdio. Isto acontece quando os ventrículos contraem e bombeiam sangue.
A onda T representa a repolarização dos ventrículos imediatamente antes do relaxamento ventricular, ou diástole ventricular.
O ciclo repete-se a cada batimento cardíaco.

Email this to someoneShare on FacebookTweet about this on TwitterShare on Google+Share on LinkedIn

La Circulación Sanguínea a Través del Corazón, con Animación.

¡Haz clic aquí para poder acceder a nuestro video y otras imágenes/videos similares en nuestra página web!

La sangre del organismo pobre en oxígeno regresa a la aurícula derecha del corazón. La sangre que viene del tronco superior vuelve a través de la vena cava superior, y la que viene del tronco inferior regresa a través de la vena cava inferior. Cuando la aurícula derecha se llena de sangre, se contrae, la válvula tricúspide se abre y la sangre se bombea al ventrículo derecho del corazón. Cuando el ventrículo derecho se llena, la válvula tricúspide se cierra para prevenir que la sangre fluya hacia atrás  a la aurícula. El ventrículo derecho se contrae, la válvula pulmonar se abre y la sangre se bombea por la arteria pulmonar hasta los pulmones. La válvula pulmonar se cierra para prevenir que la sangre fluya hacia atrás al ventrículo.

La Sangre oxigenada en los pulmones regresa a través de las venas pulmonares a la aurícula izquierda del corazón. Cuando la aurícula izquierda se llena de sangre, se contrae, la válvula mitral se abre y la sangre se bombea al ventrículo izquierdo del  corazón. Esto ocurre al mismo tiempo que la aurícula derecha, al otro lado del corazón, bombea sangre al ventrículo derecho. Cuando el ventrículo izquierdo se llena, la válvula mitral se cierra, la válvula aórtica se abre, el ventrículo izquierdo se contrae y la sangre rica en oxígeno se bombea hacia la aorta para llegar a todas las partes del cuerpo.  Esto ocurre al mismo tiempo que el ventrículo derecho, al otro lado del corazón, bombea sangre a la arteria pulmonar. La válvula aortica se cierra rápidamente y previene que la sangre fluya hacia atrás al corazón. Mientras tanto, las aurículas se han llenado de sangre y el ciclo se repite.

Email this to someoneShare on FacebookTweet about this on TwitterShare on Google+Share on LinkedIn