Category Archives: Cardiology and Vascular diseases

El Sistema de Conducción Cardíaca (con vídeo)

¡Haz clic aquí para poder acceder a nuestro video y otras imágenes/videos similares en nuestra página web!

El sistema de conducción cardíaca consiste en los siguientes componentes:

El nodo sinusal o sinoauricular, se encuentra en la aurícula derecha cerca de la entrada de la vena cava superior. Éste es el marcapasos natural del corazón. Inicia todos los latidos del corazón y determina el ritmo cardíaco. Los impulsos eléctricos del nodo sinoauricular se dispersan por todas las aurículas y las estimulan para que se contraigan.

El nodo auriculoventricular , se encuentra al otro lado de la aurícula derecha, cerca de la válvula auriculoventricular. El nodo auriculoventricular sirve como una puerta eléctrica a los ventrículos. Éste retarda el paso de los impulsos eléctricos a los ventrículos. Este retraso es para asegurar que las aurículas hayan expulsado toda la sangre a los ventrículos antes de que los ventrículos se contraigan.

– El nodo auriculoventricular recibe señales del nodo sinoauricular y las pasa al haz de His.

– Este haz entonces se divide en la rama derecha y la rama izquierda, las cuales conducen los impulsos hacia el ápice del corazón. Las señales entonces se pasan a las fibras de Purkinje, dirigiéndose hacia arriba y se dispersan por el miocardio ventricular.

Las actividades eléctricas del corazón se pueden grabar en forma de un electrocardiograma, ECG o EKG. El ECG es una grabación compuesta de todos los potenciales de acción producidos por los nodos y las células del miocardio. Cada onda o segmento del ECG corresponde a un acontecimiento del ciclo eléctrico cardiaco.

Cuando las aurículas se llenan de sangre, el nodo sinoauricular se dispara, las señales eléctricas se dispersan por todas las aurículas y causa que se despolaricen. Está representado por la onda P del ECG. La contracción auricular, o sístole auricular ocurre mas o menos 100 milisegundos después del inicio de la onda P.

El segmento P-Q representa el tiempo en que las señales viajan del nodo sinoauricular al nodo auriculoventricular.

El complejo QRS marca la activación del nodo auriculoventricular y representa la despolarización de los ventrículos.

– La onda Q corresponde a la despolarización del tabique interventricular
– La onda R se produce por la despolarización de la masa principal de los ventrículos.

– La onda S representa la última etapa de despolarización ventricular en la base del corazón.

– La repolarización auricular también ocurre en este momento pero la señal se oculta por el gran tamaño del complejo QRS.

El segmento S-T refleja la etapa de equilibrio o meseta en los potenciales de acción miocardios. En este momento los ventrículos se contraen y bombean la sangre.

La onda T representa la repolarización ventricular justo antes de la relajación ventricular o diástole ventricular.

El ciclo se repite con cada latido del corazón.

Email this to someoneShare on FacebookTweet about this on TwitterShare on Google+Share on LinkedIn

La Circulation du Sang dans le Coeur

Les vidéos sur cette page peuvent être téléchargés à l’achat d’ une licence sur le site Alila Medical Media . Cliquez ici!


Sang pauvre en oxygène de votre corps revient à l’oreillette droite du cœur. Le sang de haut du corps retourne à travers la veine cave supérieure, le sang à partir du bas du corps retourne par la veine cave inférieure. Comme l’oreillette droite est pleine de sang, il se contracte, la valvule tricuspide s’ouvre et le sang est pompé dans le ventricule droit du cœur. Lorsque le ventricule droit est pleine, la valvule tricuspide se ferme pour empêcher le sang de refluer dans l’oreillette. Le ventricule droit se contracte, la valvule sigmoïde s’ouvre et le sang est pompé dans l’artère pulmonaire et à vos poumons. Valvule sigmoïde se ferme pour empêcher le sang de refluer dans le ventricule. Sang riche en oxygène des poumons retourne par les veines pulmonaires à l’oreillette gauche du coeur. Comme l’oreillette gauche est rempli de sang, il se contracte, la valvule mitrale s’ouvre et le sang est pompé dans le ventricule gauche du cœur. Cela se produit en même temps que l’oreillette droite pompe du sang dans le ventricule droit de l’autre côté du coeur. Comme le ventricule gauche est pleine, la valvule mitrale se ferme, la valvule aortique s’ouvre, le ventricule gauche se contracte et le sang riche en oxygène est pompé dans l’artère aorte pour atteindre toutes les parties de votre corps. Cela se produit en même temps que le ventricule droit pompe du sang dans l’artère pulmonaire de l’autre côté du coeur. La valvule aortique se ferme rapidement pour empêcher le sang de refluer vers le cœur. Entre-temps, les oreillettes ont rempli de sang et le cycle se répète.

Email this to someoneShare on FacebookTweet about this on TwitterShare on Google+Share on LinkedIn

Le Système de Conduction Cardiaque


Les vidéos sur cette page peuvent être téléchargés à l’achat d’ une licence sur le site Alila Medical Media . Cliquez ici!

Le système de conduction cardiaque se compose des éléments suivants :
– Le nœud sinusal, aussi appelé noeud SA, situé dans l’oreillette droite près de l’entrée de la veine cave supérieure. Le noeud sinusal est le pacemaker naturel du coeur. Il initie tous les battements de cœur et détermine la fréquence cardiaque. Le signal électrique généré dans le nœud SA s’étend aux oreillettes et a pour effet que celles-ci se contractent.
– Le nœud auriculo-ventriculaire, aussi appelé nœud AV, situé de l’autre côté de l’oreillette droite. Le nœud AV a pour fonction de transmettre l’impulsion électrique des oreillettes aux ventricules avec un petit délai de temps. Ce délai est d’assurer que les oreillettes ont éjecté tout le sang dans les ventricules avant que les ventricules se contractent.
– Le signal électrique passe ensuite dans le tronc du faisceau de His.
– Celui-ci après un court trajet se divise en deux branches, une pour le ventricule droit, l’autre pour le ventricule gauche. Le signal passe ensuite dans le réseau de Purkinje et s’étend au myocarde ventriculaire.
Activités électriques du cœur peuvent être enregistrés sous la forme d’un électrocardiogramme ou un ECG. Un ECG est un enregistrement composite de tous les potentiels d’action produits par les noeuds et les cellules du myocarde. Chaque onde ou segment de l’ECG correspond à un certain événement du cycle électrique cardiaque.
Lorsque les oreillettes sont pleines de sang, le nœud SA déclenche une impulsion qui est rapidement transmise aux oreillettes et suscite leur dépolarisation.
Ceci est représenté par l’onde P sur l’ECG. Contraction des oreillettes, ou systole auriculaire, commence environ 100 milli – secondes après le début de l’onde P.
Le segment PQ représente le temps nécessaire à la transmission de l’impulsion électrique du nœud SA au nœud AV.
Le complexe QRS marque le déclenchement du noeud AV et représente la dépolarisation ventriculaire :
– L’Onde Q correspond à la dépolarisation du septum interventriculaire .
– L’Onde R est produit par dépolarisation de la masse principale des ventricules .
– L’Onde S représente la dernière phase de la dépolarisation ventriculaire à la base du cœur .
– la repolarisation atriale se produit également pendant cette période, mais le signal est obscurcie par le grand complexe QRS .
Le segment ST reflète le plateau du potentiel d’action du myocarde. C’est à ce moment que les ventricules se contractent et pompent du sang.
L’onde T représente la repolarisation ventriculaire immédiatement avant la relaxation ventriculaire ou diastole ventriculaire .
Le cycle se répète avec chaque battement de cœur.

Email this to someoneShare on FacebookTweet about this on TwitterShare on Google+Share on LinkedIn

Types of Heart Block – AV Nodal Blocks


The videos on this page can be downloaded upon purchase of a license on Alila Medical Media website. Click here!

The heart electrical signals are initiated in its natural pacemaker – the sinoatrial node, or SA node, and travel through the atria to reach the atrioventricular node, or AV node. The AV node is the gateway to the ventricles. The AV node passes the signals onto the bundle of His. This bundle is then divided into left and right bundle branches which conduct the impulses toward the apex of the heart. The signals are then passed onto fascicular branches, and spread through millions of Purkinje fibres over the ventricular myocardium.
Heart block is a group of diseases characterized by presence of an obstruction, or a “BLOCK” in the heart electrical pathway. A block may slow down the conduction of electrical impulses, OR, in more severe cases, completely stop them. Heart blocks are classified by location where the blockage occurs. Accordingly, there are: SA nodal blocks, AV nodal blocks, intra-Hisian blocks, bundle branch blocks and fascicular blocks.
Of these, AV nodal blocks, or AV blocks, are most clinically significant. In fact, very commonly, the term “heart block “, if not specified otherwise, is used to describe AV blocks. In AV blocks, the electrical signals are slow to reach the ventricles, or completely interrupted before reaching the ventricles.

There are three degrees of AV block:

First-degree AV block: the electrical signals are SLOWED as they pass from the SA node to the AV node, but all of them eventually reach the ventricle. On an ECG, this is characterized by a longer PR interval of more than 5 small squares. First-degree AV blocks rarely cause symptoms or problems and generally do NOT require treatment.
Second-degree AV blocks are divided further into type I and type II:

In type I, the electrical signals are delayed further and further with each heartbeat until a beat is missing completely. On an ECG, this is seen as PROGRESSIVE prolongation of PR interval followed by a P wave WITHOUT a QRS complex. This is known as a “blocked” P wave or a “dropped” QRS complex. The cycle then re-starts over. As this usually repeats in regular cycles, there is a fixed ratio between the number of P waves and the number of QRS complexes per cycle. The number of QRS complexes always equals the number of P waves MINUS one. In this example, there are four P waves for every three QRS complexes. This is a “4 to 3” heart block. Second-degree type I blocks are usually mild and no specific treatment is indicated.
In type II second degree blocks, some of the electrical signals do NOT reach the ventricles. On an ECG, this is seen as intermittent non-conducted P-waves. The PR interval, however, remains CONSTANT in conducted beats. In majority of cases, the successfully conducted QRS complexes may appear broader than usual. In some type II blocks, there is a fixed number of P waves per QRS complex. In this example, there are three P waves for every QRS complex and the condition is described as “3 to 1” heart block. However, as the nature of type II block is unstable, this ratio is likely to change over time. Second- degree type II is less common than second-degree type I but is much more dangerous as it frequently progresses to complete heart block or cardiac arrest. Implantation of an artificial pacemaker is recommended for treatment of this type of AV blocks.
Third-degree AV blocks are also referred to as complete heart blocks. In this condition, NONE of the electrical signals from the atria reach the ventricles. With NO input coming from the atria, the ventricles usually try to generate some impulses on their own. This is known as an “ESCAPE rhythm”. On an ECG, two independent rhythms can be seen: a regular P wave pattern represents atrial rhythm; and a regular, but UNUSUALLY slow QRS pattern represents the escape rhythm. The PR interval is variable as there is NO relationship between the 2 rhythms. Patients with third-degree heart blocks are at high risk of cardiac arrest. They require immediate treatment, cardiac monitoring and pacemaker implantation.

Email this to someoneShare on FacebookTweet about this on TwitterShare on Google+Share on LinkedIn

Endovascular Coiling for Treatment of Cerebral Aneurysm

Below is a narrated animation of Endovascular coiling. Click here to license this video and other similar images/videos on Alila Medical Media website.


Endovascular coiling or endovascular embolization is a minimally invasive technique performed to treat brain aneurysms. The goal of the treatment is to block blood flow into the aneurysm and therefore reduce the risk of aneurysm rupturing.

In this procedure, a catheter guided by a wire is inserted through the femoral artery at the groin and threaded all the way to the affected brain artery. The guide wire is removed. A micro-catheter carrying a soft platinum coil is introduced inside the initial catheter and is navigated into the aneurysm opening. The coil is then deployed into the aneurysm sac. A small electrical current is passed to detach the coil from the catheter. It may take several coils to fill the aneurysm. The coils induce blood clotting inside the aneurysm and seal it off from the artery.

In some cases, when the neck of the aneurysm is too wide, a stent may be used to keep the coils within the aneurysm sac. Stent-assisted coiling involves permanently placing a stent in the artery prior to coiling. The stent acts as a scaffold inside the artery to help holding the coils in place.

Email this to someoneShare on FacebookTweet about this on TwitterShare on Google+Share on LinkedIn

Cardiac Arrhythmias Overview

Below is a narrated animation of Cardiac Arrhythmias. Click here to license this video and other similar images/videos on Alila Medical Media website.

Cardiac arrhythmias can be classified by site of origin:

– Sinus rhythms originate from the sinoatrial node, or SA node
– Atrial rhythms originate from the atria
– Ventricular rhythms originate from the ventricles.

1.  Sinus Rhythms:

Sinus rhythm is the normal rhythm of the heart set by its natural pacemaker in the SA node. In a healthy heart, the SA node fires 60 to 100 times per minute resulting in the normal heart rate of 60 to 100 beats per minute.
The most common variations of sinus rhythm include:
Sinus bradycardia: when the SA node fires less than 60 times per minute resulting in a slower heart rate of less than 60 beats per minute.
and
Sinus tachycardia: when the SA node fires more than 100 times per minute generating a faster heart rate of greater than 100 beats per minute.
Sinus bradycardia and sinus tachycardia may be normal or clinical depending on the underlying cause. For example, sinus bradycardia is considered normal during sleep and sinus tachycardia may be normal during physical exercises.

2. Atrial Rhythms:

Cardiac arrhythmias that originate from other parts of the atria are always clinical. The most common include: atrial flutter, atrial fibrillation and AV nodal re-entrant tachycardia. These are forms of supraventricular tachycardia or SVT.
Atrial flutter or A-flutter is caused by an electrical impulse that travels around in a localized self-perpetuating loop, most commonly located in the right atrium. This is called a re-entrant pathway. For each cycle around the loop, there is one contraction of the atria. The atrial rate is regular and rapid – between 250 and 400 beats per minute. Ventricular rate, or heart rate, however, is slower, thanks to the refractory properties of the AV node. The AV node blocks part of atrial impulses from reaching the ventricles. In this example, only one out of every three atrial impulses makes its way to the ventricles. The ventricular rate is therefore 3 times slower than the atrial rate. This is an example of a “3 to 1 heart block”. Ventricular rate in A-flutter is usually regular, but it can also be irregular.
On an ECG atrial flutter is characterized by absence of normal P wave. Instead, flutter waves, or f-waves are present in saw-tooth patterns.
Atrial fibrillation is caused by multiple electrical impulses that are initiated randomly from many ectopic sites in and around the atria, commonly near the roots of pulmonary veins. These un-synchronized, chaotic electrical signals cause the atria to quiver or fibrillate rather than contract.

The atrial rate during atrial fibrillation can be extremely high, but most of the electrical impulses do not pass through the AV node to the ventricles, again, thanks to the refractory properties of the cells of the AV node. Those do come through are irregular. Ventricular rate or heart rate is therefore irregular and can range from slow – less than 60 – to rapid -more than 100 – beats per minute.
On an ECG, atrial fibrillation is characterized by absence of P-waves and irregular narrow QRS complexes. The baseline may appear undulating or totally flat depending on the number of ectopic sites in the atria. In general, larger number of ectopic sites results in flatter baseline.
AV nodal re-entrant tachycardia or AVNRT is caused by a small re-entrant pathway that involves directly the AV node. Every time the impulse passes through the AV node, it is transmitted down to the ventricles. The atrial rate and ventricular rate are therefore identical. Heart rate is regular and fast, ranging from 150 to 250 beats per minute.

3. Ventricular Rhythms:

Ventricular rhythms are the most dangerous. In fact, they are called lethal rhythms.
Ventricular tachycardia or V-tach is most commonly caused by a single strong firing site or circuit in one of the ventricles. It usually occurs in people with structural heart problems such as scarring from a previous heart attack or abnormalities in heart muscles. Impulses starting in the ventricles produce ventricular premature beats that are regular and fast, ranging from 100 to 250 beats per minute. On an ECG V-tach is characterized by wide and bizarre looking QRS complexes. P wave is absent. V-tach may occur in short episodes of less than 30 seconds and cause no or few symptoms. Sustained v-tach lasting for more than 30 seconds requires immediate treatment to prevent cardiac arrest. Ventricular tachycardia may also progress into ventricular fibrillation.
Ventricular fibrillation or v-fib is caused by multiple weak ectopic sites in the ventricles. These un-synchronized, chaotic electrical signals cause the ventricles to quiver or fibrillate rather than contract. The heart pumps little or no blood. V-fib can quickly lead to cardiac arrest. V-fib ECG is characterized by irregular random waveforms of varying amplitude, with no identifiable P wave, QRS complex or T wave. Amplitude decreases with time, from initial coarse v-fib to fine v-fib and ultimately to flatline.

Email this to someoneShare on FacebookTweet about this on TwitterShare on Google+Share on LinkedIn

Atrial Fibrillation

Below is a narrated animation of atrial fibrillation. Click here to license this video on Alila Medical Media website.

What is Atrial Fibrillation?

Atrial fibrillation is the most common type of cardiac arrhythmia. In a healthy heart, the sinoatrial node or SA node initiates all electrical impulses in the atria. In atrial fibrillation, electrical impulses are initiated randomly from many other sites called ectopic sites in and around the atria, commonly near the roots of pulmonary veins. These un-synchronized, chaotic electrical signals cause the atria to quiver or fibrillate rather than contract.
Although the atrial rate during atrial fibrillation can be extremely high, most of the electrical impulses do not pass through the atrioventricular – the AV – node to the ventricles. This is due to refractory properties of the cells of the AV node. Those do come through are irregular. Ventricular rate or heart rate is therefore irregular and can range from slow – less than 60 – to rapid -more than 100 – beats per minute.
Atrial fibrillation
Fig. 1: Atrial fibrillation, ectopic firing sites and ECG. Click on image to see it on Alila Medical Media website where the image is also available for licensing.
On an ECG, atrial fibrillation is characterized by absence of P-waves and irregular narrow QRS complexes. Reminder: P-wave represents electrical activity of the SA node that is now obscured by activities of multiple ectopic sites. The baseline may appear undulating or totally flat depending on the number of ectopic sites in the atria. In general, larger number of ectopic sites results in flatter baseline.

Complications of Atrial Fibrillation

As the atria do not function properly, the heart puts out less blood, and heart failure may occur. The most common complication of atrial fibrillation, however, is the formation of blood clots in the atria. As the atria do not empty completely into the ventricles, the blood may stagnate inside the atria and blood clots may form. These clots may then pass into the bloodstream, get stuck in small arteries and block them. When a blood clot blocks an artery in the brain, a stroke may result.
Atrial fibrillation causing brain stroke, labeled.

Fig. 2: Atrial fibrillation causes brain stroke. Click on image to see it on Alila Medical Media website where the image is also available for licensing.

Email this to someoneShare on FacebookTweet about this on TwitterShare on Google+Share on LinkedIn

The cardiac conduction system and relationship to ECG

The cardiac conduction system

Below is a narrated animation about electrical conduction of the heart and ECG anatomy. Click here to license this video and/or other cardiovascular related videos on Alila Medical Media website.

The cardiac conduction system consists of the following components:
– The sinoatrial node, or SA node, located in the right atrium near the entrance of the superior vena cava. This is the natural pacemaker of the heart. It initiates all heartbeat and determines heart rate. Electrical impulses from the SA node spread throughout both atria and stimulate them to contract.
– The atrioventricular node, or AV node, located on the other side of the right atrium, near the AV valve. The AV node serves as electrical gateway to the ventricles. It delays the passage of electrical impulses to the ventricles. This delay is to ensure that the atria have ejected all the blood into the ventricles before the ventricles contract.
Electrical pathways of the heart, labeled diagram.
Fig. 1: The cardiac conduction system. Click on image to see it on Alila Medical Media website where the image is also available for licensing (together with other related images and videos).

 

 

 

 
– The AV node receives signals from the SA node and passes them onto the atrioventricular bundle, AV bundle or bundle of His.
– This bundle is then divided into right and left bundle branches which conduct the impulses toward the apex of the heart. The signals are then passed onto Purkinje fibers, turning upward and spreading throughout the ventricular myocardium.

Understanding ECG/EKG

Electrical activities of the heart can be recorded in the form of electrocardiogram, ECG or EKG. An ECG is a composite recording of all the action potentials produced by the nodes and the cells of the myocardium. Each wave or segment of the ECG corresponds to a certain event of the cardiac electrical cycle.
ECG cycle explained.
Fig. 2: Electrical activities of the heart and relationship to ECG. Click on image to see it on Alila Medical Media website where the image is also available for licensing (together with other related images and videos).

 

 

 

 
When the atria are full of blood, the SA node fires, electrical signals spread throughout the atria and cause them to depolarize. This is represented by the P wave on the ECG. Atrial contraction , or atrial systole (SIS-toe-lee) starts about 100 mili-seconds after the P wave begins.
The P-Q segment represents the time the signals travel from the SA node to the AV node.
The QRS complex marks the firing of the AV node and represents ventricular depolarization:
– Q wave corresponds to depolarization of the interventricular septum.
– R wave is produced by depolarization of the main mass of the ventricles.
– S wave represents the last phase of ventricular depolarization at the base of the heart.
– Atrial repolarization also occurs during this time but the signal is obscured by the large QRS complex.
The S-T segment reflects the plateau in the myocardial action potential. This is when the ventricles contract and pump blood.
The T wave represents ventricular repolarization immediately before ventricular relaxation, or ventricular diastole (dy-ASS-toe-lee).
The cycle repeats itself with every heartbeat.

Email this to someoneShare on FacebookTweet about this on TwitterShare on Google+Share on LinkedIn

Coronary Angioplasty


Coronary angioplasty is a non-surgical procedure used to widen coronary arteries with cholesterol plaques. It can also be performed as an emergency treatment for heart attack (myocardial infarction). 

The first part of the procedure is to localize the site of blockage (Fig. 1). This part is called cardiac catheterization and can be performed without subsequent angioplasty, i.e. just for diagnostic purposes.

Below is a narrated animation about myocardial infarction, cardiac catheterization and coronary angioplasty. Click here to license this video and/or other cardiovascular related videos on Alila Medical Media website.

A catheter (guiding catheter) is inserted through the femoral artery at the groin, or less commonly, through the radial artery in the arm (Fig. 1 and 2) and threaded all the way to the aorta. The tip of the catheter is placed at the beginning of the coronary artery to be investigated (it does not go inside the artery). A radio-opaque dye is injected through the catheter into the coronary artery. This enables real-time visualization of the artery using X-ray imaging. A narrowed part of an artery would appear as a bottle neck on an x-ray image (Fig.1).

Click here to see an animation of cardiac catheterization on Alila Medical Media website where the video is also available for licensing.

Cardiac catheterization
Fig. 1: Cardiac catheterization procedure for diagnosis of blocked site. Click on image to see a larger version on Alila Medical Media website where the image is also available for licensing.

 

 

 

After the location of stenosis (narrowed artery) is identified, angioplasty can begin. A thin guidewire with radio-opaque tip is inserted inside the guiding catheter and threaded past it into the location of plaque. Reminder : the guiding catheter stops at the start of coronary artery, but the guidewire would go further into it and to the location of blockage. An angioplasty catheter (a catheter with deflated balloon) is then inserted in such a way that the guidewire now is inside of it. The balloon is pushed to the location of blockage where it would be inflated and thus crushing the plaque (see Fig. 2 and 3). At the end of procedure, the balloon is again deflated and removed together with all catheters and guidewire.

Click here to see an animation of balloon angioplasty on Alila Medical Media website where the video is also available for licensing.
Coronary angioplasty
Fig. 2: Coronary angioplasty procedure. Click on image to see a larger version on Alila Medical Media website where the image is also available for licensing.


Balloon angioplasty procedure
Fig. 3: Balloon angioplasty procedure. The guidewire is the thin line that goes past the plaque. The guiding catheter is (of course) NOT on this picture as it stays outside of the coronary artery. Click on image to see a larger version on Alila Medical Media website where the image is also available for licensing.

 

 

 

In some cases, a stent is inserted together with the balloon (Fig. 4), inflated and left on place of the plaque to keep the artery open permanently. The stent can be bare-metal (the original version) or drug-eluting (newer versions). Bare-metal stents simply provide a mechanical support.  Drug-eluting stents are coated with various drugs that are released over time and act to prevent tissue growth at the site and/or modulate inflammatory response. The benefit of using stents is still debatable.
Stent angioplasty procedure
Fig. 4: Stent angioplasty procedure. Click on image to see a larger version on Alila Medical Media website where the image is also available for licensing.

 

 

 

 

Click here to see an animation of stent angioplasty on Alila Medical Media website where the video is also available for licensing.

                                                                           > See all Circulatory topics

Email this to someoneShare on FacebookTweet about this on TwitterShare on Google+Share on LinkedIn

Heart attack


Myocardial infarction, commonly referred to as heart attack, is the sudden death of part of the heart muscle (the myocardium) due to loss of blood flow (ischemia). This occurs when one of  the coronary arteries – the arteries that supply blood to the heart – is blocked.
Coronary arteries, labeled diagram.
Fig. 1: Coronary arteries supply blood to the heart. They branch out from the first part of the aorta. Click on image to see a larger version on Alila Medical Media website where the image is also available for licensing.

 

 

 

The blockage is commonly due to atherosclerosis – cholesterol plaques/fat deposits on the wall of blood vessels. As the plaque builds up, the vessel becomes narrow restricting blood flow. Under stress, the plaque may rupture. This triggers formation of blood clot on top of the plaque leading to complete blockage of blood flow.  When this happens in a coronary artery, the downstream patch of the myocardium dies from lack of oxygen (Fig. 2). Weaken heart muscle may disrupt electrical activity of the heart and cause fibrillation with subsequent cardiac arrest.
heart attack
Fig. 2: Anatomy of a heart attack due to atherosclerotic plaque. Click on image to see a larger version on Alila Medical Media website where the image is also available for licensing.

 

 

 

 

Click here to see an animation of heart attack  on Alila Medical Media website where the video is also available for licensing.

Signs and symptoms

The most common symptom is described as a heavy pressure and squeezing pain inside the chest which often radiates to the shoulder and left arm. Other symptoms include shortness of breath, sweating, weakness, nausea and vomiting.

In a number of cases, especially in elderly and people with diabetes, no chest pain or other symptoms are reported. These are called silent myocardial infarction. In such a case, myocardial infarction is diagnosed later with electrocardiograms (ECG), blood enzyme tests or an autopsy.

Risk factors and Causes

Heart attack is caused by build-up of atherosclerotic plaques. Risk factors include smoking, alcohol consumption, obesity, sedentary lifestyle, stress. Incidence increases with age, also, men are more at risk than women.

Onset of acute myocardial infarction is commonly associated with physical and/or psychological exertion. When the body is under physical or emotional stress, blood flow is increased. This leads to stretching of the wall of blood vessels and potentially rupture of plaques.

Below is a narrated animation about myocardial infarction, cardiac catheterization and coronary angioplasty. Click here to license this video and/or other cardiovascular related videos on Alila Medical Media website.


Treatments

Immediate treatments for suspected heart attack include blood thinners such as aspirin. Blood thinners are drugs that prevent further blood clotting. If this doesn’t help, another class of drugs called thrombolytic may be used. Thrombolytic drugs act to dissolve blood clots. This process is called thrombolysis.

Severe cases will require interventional therapy such as angioplasty where the blocked blood vessel is forced to open wider with a balloon and possibly a stent.

People with multiple sites of blockage may require heart bypass surgery. In this surgical procedure, a piece of healthy artery or vein taken from elsewhere in the body is used as a graft to “bypass” the blocked part of coronary artery.

                                                                            > See all Circulatory topics

Email this to someoneShare on FacebookTweet about this on TwitterShare on Google+Share on LinkedIn